Weekly Schedule

The schedule along with the list of topics to be covered are tentative and subject to change.

Week DateModuleTopicAssignment
1T1/20IntroductionWelcome and course overviewPost a note on Teams to introduce yourself.
Review the Syllabus.
 R1/22 Linear algebra basics; Numpy and PyTorch basicsSetup software and development environment for the course (see here)
2T1/27Linear Neural Networks for RegressionLinear regression 
 R1/29 Linear regression 
3T2/3 Linear regression implementation from scratch and with PyTorch 
 R2/5 Generalization, overfitting, and regularization 
4T2/10Linear Neural Networks for ClassificationLogistic regression 
 R2/12 Softmax regression 
5T2/17 Softmax regression implementation from scratch 
 R2/19 Softmax regression implementation with PyTorch; Classifier generalization 
6T2/24Non-linear Neural NetworksMulti-layer perceptrons 
 R2/26 Multi-layer perceptron implementation from scratch and with PyTorch 
7T3/3 Computational graphs and backpropagation; Network initialization 
 R3/5Convolutional Neural Networks (CNNs)Introduction 
8T3/10 CNN details 
 R3/12 Mid-term Exam in Wagar 133 
9T3/17 No class: Spring recess 
 R3/19 No class: Spring recess 
10T3/24 The LeNet CNN 
 R3/26Modern CNNsAlexNet and VGGs 
11T3/31 ResNet; Batch Normalization; Dropout 
 R4/2Recurrent Neural NetworksIntroduction 
12T4/7 LSTMs for text classification 
 R4/9TransformersThe attention mechanism 
13T4/14 Transformer architecture; Transformers for text classification 
 R4/16 Large language models (LLMs) 
14T4/21Reinforcement Learning (RL)Introduction 
 R4/23 RL with neural networks 
15T4/28 Applying RL to control a robot 
 R4/30Additional TopicsOptimization algorithms 
16T5/5 What did we miss? 
 R5/7 Can we trust AI? 
17T5/12 Final Exam in Wagar 133 (9:40-11:40 am)