
A Correspondence between Two Approaches to
Interprocedural Analysis in the Presence of Join

Ravi Mangal1, Mayur Naik1, and Hongseok Yang2

1 Georgia Institute of Technology 2 University of Oxford

Abstract. Many interprocedural static analyses perform a lossy join for
reasons of termination or efficiency. We study the relationship between
two predominant approaches to interprocedural analysis, the summary-
based (or functional) approach and the call-strings (or k-CFA) approach,
in the presence of a lossy join. Despite the use of radically different ways
to distinguish procedure contexts by these two approaches, we prove
that post-processing their results using a form of garbage collection ren-
ders them equivalent. Our result extends the classic result by Sharir and
Pnueli that showed the equivalence between these two approaches in the
setting of distributive analysis, wherein the join is lossless.
We also empirically compare these two approaches by applying them to a
pointer analysis that performs a lossy join. Our experiments on ten Java
programs of size 400K–900K bytecodes show that the summary-based
approach outperforms an optimized implementation of the k-CFA ap-
proach: the k-CFA implementation does not scale beyond k=2, while the
summary-based approach proves up to 46% more pointer analysis client
queries than 2-CFA. The summary-based approach thus enables, via our
equivalence result, to measure the precision of k-CFA with unbounded
k, for the class of interprocedural analyses that perform a lossy join.

1 Introduction

Two dominant approaches to interprocedural static analysis are the summary-
based approach and the call-strings approach. Both approaches aim to analyze
each procedure precisely by distinguishing calling contexts of a certain kind. But
they differ radically in the kind of contexts used: the summary-based (or func-
tional) approach uses input abstract states whereas the call-strings (or k-CFA)
approach uses sequences of calls that represent call stacks.

Sharir and Pnueli [SP81] showed that, in the case of a finite, distributive anal-
ysis, the summary-based approach is equivalent to the unbounded call-strings
approach (hereafter called ∞-CFA). In this case, both these approaches main-
tain at most one abstract state at each program point under a given context of
its containing procedure, applying a join operation to combine different abstract
states at each program point into a single state. The distributivity condition en-
sures that this join is lossless. As a result, both approaches compute the precise
meet-over-all-valid-paths (MVP) solution, and are thus equivalent.

Many useful static analyses using the summary-based approach, however,
lack distributivity. They too use a join, in order to maintain at most one abstract

state at each program point under a given context, and thereby scale to large
programs (e.g., [FYD+08]). But in this non-distributive case, the join is lossy,
leading such analyses to compute a solution less precise than the MVP solution.

We study the relationship between the summary-based and call-strings ap-
proaches, in the presence of a lossy join. Our main result is that these two ap-
proaches are equivalent in precision despite their use of radically different ways
to distinguish procedure contexts. This result yields both theoretical and practi-
cal insights. The theoretical insight includes two new proof techniques. The first
is a form of garbage collection on the results computed by the non-distributive
summary-based approach. This garbage collection removes entries of procedure
summaries that are used during analysis but not in the final analysis results.
It provides a natural way for connecting the results of the summary-based ap-
proach with those of ∞-CFA. The other is a new technique for proving that a
fixpoint of a non-monotone function is approximated by a pre-fixpoint of the
function. Standard proof techniques do not apply because of non-monotonicity,
but such an approximation result is needed in our case because non-distributive
summary-based analyses use non-monotone transfer functions.

On the practical side, our equivalence result provides, for the class of non-
distributive interprocedural analyses, a feasible approach to determine how pre-
cise k-CFA can get using arbitrary k. This feasible approach is the summary-
based one, which scales much better than k-CFA. State-of-the-art algorithms
for k-CFA do not scale to beyond small values of k, as the number of call-string
contexts in which they analyze procedures grows exponentially with k. As a con-
crete example, we compare the performance of the summary-based approach to
an optimized BDD-based implementation of k-CFA for a non-distributive pointer
analysis for object-oriented programs. On ten Java programs each of size 400K-
900K bytecodes from the DaCapo benchmark suite, we find that the k-CFA im-
plementation does not scale beyond k=2, and even for k=2, it computes 4X–7X
more contexts per benchmark than the summary-based approach. Furthermore,
for three clients of the pointer analysis—downcast safety, call graph reachabil-
ity, and monomorphic call inference—the summary-based approach proves up to
46% more client queries per benchmark than 2-CFA, providing an upper bound
on the number of queries that is provable by k-CFA using arbitrary k.

2 Example

We illustrate various interprocedural approaches by means of a pointer analysis
on the Java program in Figure 1. All the approaches infer points-to information—
aliasing relationships among program variables and heap objects—but differ in
their treatment of methods. We illustrate five key aspects of these approaches: (i)
0-CFA produces imprecise results; (ii) using k-CFA with k > 0 helps to address
this imprecision but hurts scalability; (iii) summary-based analysis (hereafter
called SBA) causes no loss in precision compared to k-CFA; (iv) the lossy join
operation in SBA allows analyzing methods in fewer contexts and thereby im-
proves scalability; and (v) SBA can merge multiple k-CFA contexts of a method
into a single SBA context which also improves scalability.

class A {}

class B {}

class Container {
Object holder;

Container() { holder = null; }
void add(Object x) {
if (x.equals(holder)) return;

holder = x;

}
bool isEmpty() {
return (holder==null);

}
}

class C {
static Container foo() {

h1: Container s1 = new Container();

h2: A a = new A();

i1: s1.add(a);

return s1;

}
static Container bar() {

h3: Container s2 = new Container();

h4: B b = new B();

i2: s2.add(b);

return s2;

}
static void taz(Container s) {...}
static void main() {
Container s = (*) ? foo() : bar();

j1: // join point

i3: s.isEmpty();

i4: s.isEmpty();

i5: taz(s);

}
}

Fig. 1: Example Java program.

We start with 0-CFA which treats method calls in a context insensitive man-
ner. This means that the analysis does not differentiate different call sites to
a method, and merges all the abstract states from these call sites into a single
input. For instance, consider the program in Figure 1, where the main() method
calls either foo() or bar(), creates a container object s containing an A or B

object, and operates on this container s by calling isEmpty() and taz(). When
the pointer analysis based on 0-CFA is applied to main, it imprecisely concludes
that the returned container from foo() may contain an A or B object, instead
of the true case of containing only an A object. Another imprecise conclusion
is what we call call graph reachability. The analysis infers that at one point of
execution, the call stack may contain both foo() and B::equals(), the second
on top of the first, i.e., B::equals() is reachable from foo(). Note that this
reachability never materializes during the execution of the program. The main
source of both kinds of imprecision is that 0-CFA does not differentiate between
the calls to add() from i1 in foo() and i2 in bar(). It merges the abstract states
from both call sites and analyzes add() under the assumption [x → {h2, h4}],
which means that x points to a heap object allocated at h2 or h4, so the object
x has type A or B. Note that once this assumption is made, the analysis cannot
avoid the two kinds of imprecision discussed above.

One way to resolve 0-CFA’s imprecision is to use an analysis based on k-CFA
with k > 0, which analyzes method calls separately if the call stacks at these call
sites store sufficiently different sequences of call sites. For instance, the pointer

analysis based on 1-CFA analyzes a method multiple times, once for each of its
call sites. Hence, when it is applied to our example, it differentiates two call sites
to add() (i.e., i1 and i2), and analyzes add() twice, once for the call site i1
with the assumption [x→ {h2}] on the parameter x, and again for the call site
i2 with the assumption [x → {h4}]. This differentiation enables the analysis to
infer that the returned container from foo() contains objects of the type A only,
and also that B::equals() is not reachable from foo(). In other words, both
kinds of imprecision of 0-CFA are eliminated with 1-CFA.

An alternative solution to the imprecision issue is to use SBA. Unlike k-CFA,
SBA does not distinguish contexts based on sequences of call sites stored in the
call stack. Instead, it decides that two calling contexts differ when the abstract
states at call sites are different. SBA re-analyzes a method in a calling context
only if it has not seen the abstract state τ of this context before. In Figure 1, the
abstract states at call sites i1 and i2 are, respectively, [s1 → {h1}, a → {h2}]
and [s2 → {h3}, b → {h4}], which become the following input abstract states
to add() after the actual parameters are replaced with the formal parameters;
[this → {h1}, x → {h2}] and [this → {h3}, x → {h4}]. Since these inputs are
different, SBA analyzes method add() separately for the calls from i1 and i2,
and reaches the same conclusion about the return value of foo() and call graph
reachability as that of 1-CFA described previously. This agreement in analysis
results is not an accident. We prove in Section 3 that SBA’s results always
coincide with those of ∞-CFA, a version of k-CFA that does not put a bound
on the length of call-strings.

An important feature of SBA is that at every control-flow join point in a
program, incoming abstract states to this point are combined to a single abstract
state via a lossy join operator (if they all originate from the same input abstract
state to the current method). This greatly helps the scalability of SBA, because
it leads to fewer distinct abstract states at call sites and reduces the number of
times that each method should be analyzed. For instance, when SBA analyzes
the program in Figure 1, it encounters two incoming abstract states at the join
point j1, τ1 = [s → {h1}] from the true branch and τ2 = [s → {h3}] from the
false branch. The analysis combines τ1 and τ2 using a lossy join operator, and
results in τ ′ = [s → {h1, h3}]. As a result, at the subsequent call site i5, the
analysis has only one input abstract state τ ′, instead of two (i.e., τ1 and τ2), and
it analyzes the method taz() only once.

Using a lossy join operator differentiates SBA from the well-known distribu-
tive summary-based analysis [RHS95, SP81], which uses a lossless join. If such
an analysis were applied to our program, it would collect τ1, τ2 as the set {τ1, τ2}
at the join point j1, and analyze the call to taz() twice. As a result, the co-
incidence between the results of SBA and ∞-CFA does not follow from what
was established previously by Sharir and Pnueli. In fact, proving it requires new
proof techniques, as we explain in Section 3.

According to our experiments reported in Section 5, SBA scales better than k-
CFA for high k values. This is because SBA usually distinguishes calling contexts
of a method less than k-CFA, and re-analyzes the method less often than k-CFA.

(method) m ∈ M = { mmain , ... }
(atomic command) a ∈ A

(method call) i ∈ I

(statement) s ∈ S , (A ∪ I)
(CFG node) n ∈ N
(CFG edge) e ∈ E ⊆ N× S×N

e , 〈n1, s, n2〉
p ∈ P , (N ∪E)

origin(〈n1, s, n2〉), n1

stmt(〈n1, s, n2〉), s

target(〈n1, s, n2〉), n2

callEdge(〈n1, a, n2〉), false

callEdge(〈n1, i, n2〉), true
(method of node/edge) method ∈ P→M
(entry node of method) entry ∈ M→ N

(exit node of method) exit ∈ M→ N

Fig. 2: Notation for interprocedural control flow graphs.

Concretely, a method may be invoked multiple times with call stacks storing
different sequences of call sites but with the same abstract state. In this case,
k-CFA re-analyzes the method for each call sequence in the stack, but SBA
analyzes the method only once and reuses the computed summary for all the
invocations of this method. In effect, SBA merges multiple k-CFA contexts into
a single SBA context in this case. This phenomenon can be seen in Figure 1
at the two calls to isEmpty() in i3 and i4. Since these call sites are different,
isEmpty() would be analyzed twice by k-CFA with k ≥ 1. However, the abstract
state at both of the call sites is the same [s → {h1, h3}]. Hence, SBA analyzes
the method only once and reuses the computed summary for the second call.

3 Formal Description and Correspondence Theorem

This section formalizes an unbounded k-CFA and a summary-based interproce-
dural analysis. The former is an idealization of usual k-CFA that does not put a
bound on the length of tracked call strings (i.e., sequences of call sites in the call
stack), and records analysis results separately for each call string. To emphasize
the absence of bound, we call this analysis∞-CFA. The summary-based analysis
is a non-distributive variant of the standard summary-based approach for dis-
tributive (and disjunctive) analyses [RHS95]. It treats join points approximately
using a lossy join operator, unlike the standard approach, and trades precision for
performance. The main result of the section is that the summary-based analysis
has the same precision as ∞-CFA, despite the lossy join.

3.1 Interprocedural Control Flow Graph

In our formalism, we assume that programs are specified in terms of interpro-
cedural control flow graphs G = (M,A, I,N,E,method , entry , exit) in Figure 2.
Set M consists of method names in a program, and A and I specify available
atomic commands and method call instructions. Sets N and E determine nodes
and intraprocedural edges of a control flow graph. Each node in this graph be-
longs to a method given by the function method . The functions entry and exit
decide the entry and exit nodes of each method. The figure also shows defined
entities—origin, stmt , target , and callEdge, which can be used to obtain com-
ponents of an edge and to decide the type of the edge. We assume all the five
sets in a control flow graph are finite.

(abstract state) τ ∈ Γ = { τinit , ... }
(lattice operations)

⊔
,
d
∈ P(Γ)→ Γ ⊥,> ∈ Γ v ⊆ Γ× Γ

(transfer functions) JaK ∈ Γ→ Γ
(targets of call) calls(s, τ) ∈ P(M)

(call string) π ∈ Π ,
⋃

n≥0(M ∪E)n

(∞-CFA annotation) κ ∈ Acfa = (P×Π)→ Γ
(SBA annotation) σ ∈ Asba = (P× Γ)→ Γ

Fig. 3: Analysis domains and transfer functions.

Fcfa(κ)(n, π) =

⊔
{κ(e, π) | n = target(e) } if @m : n = entry(m)⊔
{ τ | ∃e, π1 : callEdge(e) ∧ π = m⊕ e⊕ π1

∧ τ = κ(origin(e), π1) ∧m ∈ calls(stmt(e), τ) }
if n = entry(m)

Fcfa(κ)(e, π) =

Jstmt(e)K(κ(origin(e), π)) if ¬callEdge(e)⊔
{ τ | ∃τ1,m : τ1 = κ(origin(e), π)
∧m∈ calls(stmt(e), τ1) ∧ τ =κ(exit(m),m⊕ e⊕ π) }

if callEdge(e)

Fig. 4: Transfer function Fcfa on ∞-CFA annotations.

Our control flow graphs are required to satisfy well-formedness conditions.
First, mmain ∈M. Second, for all m ∈M and e ∈ E,

entry(m) 6= exit(m) ∧ (method ◦ entry)(m) = (method ◦ exit)(m) = m ∧
(method ◦ target)(e) = (method ◦ origin)(e) = method(e).

The first conjunct means that the entry node and the exit node of a method
are different, the second says that entry and exit pick nodes belonging to their
argument method, and the last conjunct states that an edge and its source and
target nodes are in the same method.

3.2 Formal Description of Analyses

Both∞-CFA and the summary-based analysis assume (Γ, τinit , J K, calls) in Fig-
ure 3, which are needed for performing an intraprocedural analysis as well as pro-
cessing dynamically dispatched method calls. Component Γ is a finite complete
lattice, and consists of abstract states used by the analysis. The next τinit ∈ Γ is
an initial abstract state to the root method mmain , and JaK represents abstract
transfer functions for atomic commands a. The final component calls takes a
pair (s, τ), and conservatively estimates target methods of a call s in (concrete)
states described by τ , if s is a method call. Otherwise, it returns the empty set.

We require that the components of the analysis satisfy the following proper-
ties: (i) τinit 6= ⊥; (ii) calls(s,) and JaK are monotone with respect to the order
in Γ or the subset order1; (iii) calls(s,⊥) = ∅ and JaK(⊥) = ⊥; (iv) for all s and
τ , mmain 6∈ calls(s, τ), and if s is not a method call, calls(s, τ) = ∅.
∞-CFA Analysis. The ∞-CFA analysis is an interprocedural analysis that
uses call strings of arbitrary length as calling contexts and analyzes a method

1 This means ∀τ, τ ′ ∈ Γ : τ v τ ′ =⇒ (calls(s, τ) ⊆ calls(s, τ ′) ∧ JaK(τ) v JaK(τ ′)).

Fsba(σ)(n, τ) =

⊔
{σ(e, τ) | n = target(e) } if @m : n= entry(m)⊔
{ τ | ∃e, τ1 : callEdge(e) ∧ τ =σ(origin(e), τ1)
∧m ∈ calls(stmt(e), τ) }

if n = entry(m)

Fsba(σ)(e, τ) =

Jstmt(e)K(σ(origin(e), τ)) if ¬callEdge(e)⊔
{ τ ′ | ∃τ1,m : τ1 = σ(origin(e), τ)
∧m ∈ calls(stmt(e), τ1) ∧ τ ′ = σ(exit(m), τ1) }

if callEdge(e)

Fig. 5: Transfer function Fsba on SBA annotations.

separately for each call string. If a reader is familiar with k-CFA, we suggest to
view ∞-CFA as the limit of k-CFA with k tending towards ∞. Indeed, ∞-CFA
computes a result that is as precise as any k-CFA analysis.

The ∞-CFA works by repeatedly updating a map κ ∈ Acfa = (P×Π)→ Γ,
called ∞-CFA annotation. The first argument p to κ is a program node or an
edge, and the second π a call string defined in Figure 3, which is a finite sequence
of method names and edges. A typical call string is m2⊕ e2⊕m1⊕ e1⊕mmain .
It represents a chain of calls mmain → m1 → m2, where m1 is called by the edge
e1 and m2 by e2. The function κ maps such p and π to an abstract state τ , the
current estimation of concrete states reaching p with π on the call stack.

We order∞-CFA annotations pointwise: κ v κ′ ⇐⇒ ∀p, π : κ(p, π) v κ′(p, π).
This order makes the set of∞-CFA annotations a complete lattice. The∞-CFA
analysis computes a fixpoint on ∞-CFA annotations:

κcfa = leastFix λκ. (κI t Fcfa(κ)). (1)

Here κI is the initial ∞-CFA annotation, and models our assumption that a
given program starts at mmain in a state satisfying τinit :

κI(p, π) = if ((p, π) = (entry(mmain),mmain)) then τinit else ⊥.

Function Fcfa is the so called transfer function, and overapproximates one-step
execution of atomic commands and method calls in a given program. Figure 4
gives the definition of Fcfa. Although this definition looks complicated, it comes
from a simple principle: Fcfa updates its input κ simply by propagating abstract
states in κ to appropriate next nodes or edges, while occasionally pushing or
popping call sites and invoked methods in the tracked call string.

We make two final remarks on ∞-CFA. First, Fcfa is monotone with respect
to our order on ∞-CFA annotations. This ensures that the least fixpoint in
(1) exists. Although the monotonicity is an expected property, we emphasize it
here because the transfer function of our next interprocedural analysis SBA is
not monotone with respect to a natural order on analysis results. Second, the
domain of ∞-CFA annotations is infinite, so a finite number of iterations might
be insufficient for reaching the least fixpoint in (1). We are not concerned with
this potential non-computability, because we use ∞-CFA only as a device for
comparing the precision of SBA in the next subsection with that of k-CFA.

Summary-Based Analysis. The summary-based analysis SBA is another
approach to analyze methods context-sensitively. Just like∞-CFA, it keeps sep-

arate analysis results for different calling contexts, but differs from ∞-CFA in
that it uses input abstract states to methods as contexts, instead of call strings.

The main data structures of SBA are SBA annotations σ:

σ ∈ Asba = (P× Γ)→ Γ.

An SBA annotation σ specifies an abstract state σ(p, τ) at each program point
p for each calling context τ . Recall that a calling context here is just an initial
abstract state to the current method. SBA annotations are ordered pointwise:
σ v σ′ ⇐⇒ ∀p, τ : σ(p, τ) v σ′(p, τ). With this order, the set of SBA annota-
tions forms a complete lattice. Further, it is finite as P and Γ are finite.

The summary-based analysis is an iterative algorithm for computing a fix-
point of some function on SBA annotations. It starts with setting the current
SBA annotation to σI below:

σI(p, τ) = if ((p, τ) = (entry(mmain), τinit)) then τinit else ⊥,

which says that only the entry node of mmain has the abstract state τinit under
the context τinit . Then, it repeatedly updates the current SBA annotation using
the transfer function Fsba in Figure 5. The function propagates abstract states at
all program nodes and edges along interprocedural control-flow edges. In doing
so, it approximates one-step execution of every atomic command and method
call in a given program. The summary-based analysis does the following fixpoint
computation and calculates σsba:

σsba = fixσI (λσ. σ t Fsba(σ)). (2)

Let G = (λσ. σtFsba(σ)). Here (fixσI G) generates the sequence G0(σI), G
1(σI),

G2(σI), . . ., until it reaches a fixpointGn(σI) such thatGn(σI) = Gn+1(σI). This
fixpoint Gn(σI) becomes the result σsba of fixσI G.

Note that fix always reaches a fixpoint in (2). The generated sequence is
always increasing because σ v G(σ) for every σ. Since the domain of SBA an-
notations is finite, this increasing sequence should reach a fixpoint. One might
wonder why SBA does not use the standard least fixpoint. The reason is that our
transfer function Fsba is not monotone, so the standard theory for least fixpoints
does not apply. This is in contrast to ∞-CFA that has the monotone transfer
function. Non-monotone transfer functions commonly feature in program anal-
yses for numerical properties that use widening operators [Min06, CC92], and
the results of these analyses are computed similarly to what we described above
(modulo the additional use of a widening operator).

3.3 Correspondence Theorem

The main result of this section is the Correspondence Theorem, which says that
∞-CFA and SBA have the same precision.

Recall that the results of SBA and ∞-CFA are functions of different types:
the domain of σsba is P×Γ, whereas that of κcfa is P×Π. Hence, to connect the
results of both analyses, we need a way to relate functions of the first kind with
those of the second. For this purpose, we use a particular kind of functions:

Definition 1 A translation function η is a map of type M×Π→ Γ.

Intuitively, η(m,π) = τ expresses that although a call string π and an abstract
state τ are different types of calling contexts, we will treat them the same when
they are used as contexts for method m.

One important property of a translation function η is that it induces maps
between SBA and ∞-CFA annotations:

L(η,−) : Asba → Acfa L(η, σ) = λ(p, π). σ(p, η(method(p), π)),
R(η,−) : Acfa → Asba R(η, κ) = λ(p, τ).

d
{κ(p, π) | τ v η(method(p), π)}.

Both L and R use η to convert calling contexts of one type to those of the other.
The conversion in L(η, σ) is as we expect; it calls η to change an input call string
π to an input abstract state η(method(p), π), which is then fed to the given SBA
annotation σ. On the other hand, the conversion in R(η, κ) is unusual, but follows
the same principle of using η for translating contexts. Conceptually, it changes
an input abstract state τ to a set of call strings π that would be translated to an
overapproximation of τ by η (i.e., τ v η(method(p), π)), looks up the values of
κ at these call strings, and combine the looked-up values by the meet operation.
The following lemma relates L(η,−) and R(η,−):

Lemma 1. For all σ and κ, if σ v R(η, κ), then L(η, σ) v κ.

The definition of a translation function does not impose any condition, and
permits multiple possibilities. Hence, a natural question is: what is a good trans-
lation function η that would help us to relate the results of the SBA analysis with
those of the∞-CFA analysis? The following lemma suggests one such candidate
ηsba, which is constructed from the results σsba of the SBA analysis:

Lemma 2. There exists a unique translation function η : M×Π→ Γ such that
for all m ∈M, e ∈ E and π ∈ Π,

η(mmain ,mmain) = τinit ,
η(m,m⊕ e⊕ π) = if (m ∈ calls(stmt(e), σsba(origin(e), η(method(e), π)))

∧ callEdge(e)) then σsba(origin(e), η(method(e), π)) else ⊥,
η(m,π) = ⊥ (for all the other cases).

We denote this translation with ηsba.

Intuitively, for each call string π, the translation ηsba in the lemma follows the
chain of calls in π while tracking corresponding abstract input states stored in σ.
When this chasing is over, it finds an input abstract state τ corresponding to the
given π. For instance, given a method m2 and a call string m2 ⊕ e2 ⊕m1 ⊕ e1 ⊕
mmain , if all the side conditions in the lemma are met, ηsba returns abstract state
σsba(origin(e2), σsba(origin(e1), τinit)). This corresponds to the input abstract
state to method m2 that arises after method calls first at e1 and then e2.

Another good intuition is to view ηsba as a garbage collector. Specifically, for
each method m, the set

Γm = {ηsba(m,π) | π ∈ Π}. (3)

identifies input abstract states for m that contribute to the analysis result σsba
along some call chain from mmain to m; every other input abstract state τ for
m is garbage even if it was used during the fixpoint computation of σsba and so
σsba(entry(m), τ) 6= ⊥.

Our Correspondence Theorem says that the SBA analysis and the ∞-CFA
analysis compute the same result modulo the translation via L(ηsba,−).

Theorem 2 (Correspondence). L(ηsba, σsba) = κcfa.

One important consequence of this theorem is that both analyses have the same
estimation about reachable concrete states at each program point, if we garbage-
collect the SBA’s result using ηsba:

Corollary 1. For all p ∈ P and m ∈M, if method(p) = m, then

{κcfa(p, π) | π ∈ Π} = {σsba(p, τ ′) | τ ′ ∈ Γm}, where Γm is defined by (3).

Overview of Proof of the Correspondence Theorem. Proving the Corre-
spondence Theorem is surprisingly tricky. A simple proof strategy is to show that
the relationship in the theorem is maintained by each step of the fixpoint compu-
tations of ∞-CFA and SBA, but this strategy does not work. Since ∞-CFA and
SBA treat the effects of method calls (i.e., call edges) very differently, the rela-
tionship in the theorem is not maintained during fixpoint computations. Further
difficulties arise because the SBA analysis uses a non-monotone transfer function
Fsba and does not necessarily compute the least fixpoint of λσ. σItFsba(σ)—these
render standard techniques for reasoning about fixpoints no longer applicable.

In this subsection, we outline our proof of the Correspondence Theorem, and
point out proof techniques that we developed to overcome difficulties mentioned
above. The full proof is included in the Appendix.

Let Gcfa = λκ. κItFκ(κ) and Gsba = λσ. σItFsba(σ). Recall that the∞-CFA
analysis computes the least fixpoint of Gcfa while the SBA analysis computes
some pre-fixpoint of Gsba (i.e., Gsba(σsba) v σsba) via an iterative process. Our
proof consists of the following four main steps.

1. First, we prove that Gcfa(L(ηsba, σsba)) v L(ηsba, σsba). That is, L(ηsba, σsba)
is a pre-fixpoint of Gcfa. This implies

κcfa v L(ηsba, σsba), (4)

a half of the conclusion in the Correspondence Theorem. To see this impli-
cation, note that the function Gcfa is monotone and works on a complete
lattice, and the analysis computes the least fixpoint κcfa of Gcfa. According
to the standard result, the least fixpoint is also the least pre-fixpoint, so κcfa
is less than or equal to another pre-fixpoint L(ηsba, σsba).

2. We next construct another translation, denoted ηcfa, this time from the result
of the ∞-CFA analysis: ηcfa = λ(m,π). κcfa(entry(m), π). Then, we show

σsba v R(ηcfa, κcfa). (5)

The proof of this inequality uses our new technique for verifying that an
SBA annotation overapproximates σsba, a pre-fixpoint of a non-monotone
function Gsba. We will explain this technique at the end of this subsection.

3. Third, we apply Lemma 1 to the inequality in (5), combine the result of this
application with (4), and derive

L(ηcfa, σsba) v κcfa v L(ηsba, σsba). (6)

4. Finally, using the relationship between σsba and κcfa in (6), we show that
ηcfa = ηsba. Note that conjoined with the same relationship again, this equal-
ity entails L(ηsba, σsba) = κcfa, the claim of the Correspondence theorem.

Before finishing, let us explain a proof technique used in the second step. An
SBA annotation σ is monotone if ∀p, τ, τ ′ : τ v τ ′ =⇒ σ(p, τ) v σ(p, τ ′). Our
proof technique is summarised in the following lemma:

Lemma 3. For all SBA annotations σ, if σ is monotone, Gsba(σ) v σ and

∀m : τ v σ(entry(m), τ), (7)

then σsba v σ.

We remind the reader that if Gsba is a monotone function and σsba is its least
fixpoint, we do not need the monotonicity of σ and the condition in (7) in the
lemma. In this case, σsba v σ even without these conditions. This lemma extends
this result to the non-monotone case, and identifies additional conditions.

The conclusion of the second step in our overview above is obtained using
Lemma 3. In that step, we prove that (1) R(ηcfa, κcfa) is monotone; (2) it is a
pre-fixpoint of Gsba; (3) it satisfies the condition in (7). Hence, Lemma 3 applies,
and gives σsba v R(ηcfa, κcfa).

A final comment is that when the abstract domain of a static analysis is
infinite, if it is a complete lattice, we can still define SBA similar to our current
definition. The only change is that the result of SBA, σsba, is now defined in terms
of the limit of a potentially infinite chain (generated by the application of Gsba

and the least-upper-bound operator for elements at limit ordinals), instead of a
finite chain. This new SBA is not necessarily computable, but we can still ask
whether its result coincides with that of ∞-CFA. We believe that the answer
is yes: most parts of our proof seem to remain valid for this new SBA, while
the remaining parts (notably the proof of Lemma 3) can be modified relatively
easily to accommodate this new SBA. This new Coincidence theorem, however,
is limited; it does not say anything about analyses with widening.

4 Application to Pointer Analysis

We now show how to apply the summary-based approach to a pointer analysis
for object-oriented programs, which also computes the program’s call graph.

The input to the analysis is a program in the form of an interprocedural con-
trol flow graph (defined in Section 3.1). Figure 6 shows the kinds of statements
it considers: atomic commands that create, read, and write pointer locations,
via local variables v, global variables (i.e., static fields) g, and object fields (i.e.,
instance fields) f . We label each allocation site with a unique label h. We elide

(allocation site) h ∈ H
(local variable) v ∈ V

(global variable) g ∈ G
(object field) f ∈ F

(class type) t ∈ T
(atomic command) a ::= v = null |
v = new h | v = (t) v′ | g = v |
v = g | v.f = v′ | v′ = v.f

(method call) i ::= v′ = v.m()
(allocation type) type ∈ H→ T

(subtypes) sub ∈T→ P(T)
(class hierarchy analysis) cha ∈ (M×T)→M

(method argument) arg ∈M→ V
(method result) ret ∈M→ V

(abstract contexts) Γ = V→ P(H)
(points-to of locals) ptsV ∈V→ P(H)

(points-to of globals) ptsG ∈G→ P(H)
(points-to of fields) ptsF ∈ (H× F)→ P(H)

(call graph) cg ⊆ (Γ×E× Γ×M)

Fig. 6: Data for our pointer analysis.

Jv = nullK(ptsV) = ptsV[v 7→ ∅] (8)

Jv = new hK(ptsV) = ptsV[v 7→ { h }] (9)

Jg = vK(ptsV) = ptsV (10)

Jv.f = v′K(ptsV) = ptsV (11)

Jv′ = (t) vK(ptsV) = ptsV[v′ 7→ { h ∈ ptsV(v) | type(h) ∈ sub(t) }] (12)

Jv = gK(ptsV) = ptsV[v 7→ ptsG(g)] (13)

Jv′ = v.fK(ptsV) = ptsV[v′ 7→
⋃
{ptsF(h, f) | h ∈ ptsV(v)}] (14)

calls(v′ = v.m(), ptsV) = { cha(m, type(h)) | h ∈ ptsV(v) } (15)

Jg = vK(ptsG) = λg′. if (g′ = g) then (ptsG(g) ∪ ptsV(v)) else ptsG(g) (16)

Jv.f = v′K(ptsF) = λ(h, f ′). if (h ∈ ptsV(v) ∧ f ′ = f)
then (ptsF(h, f ′) ∪ ptsV(v′)) else ptsF(h, f ′)

(17)

Fig. 7: Transfer functions for our pointer analysis.

statements that operate on non-pointer data as they have no effect on our anal-
ysis. For brevity we presume that method calls are non-static and have a lone
argument, which serves as the receiver, and a lone return result. We use functions
arg and ret to obtain the formal argument and return variable, respectively, of
each method. Finally, our analysis exploits type information and uses function
type to obtain the type of objects allocated at each site, function sub to find all
the subtypes of a type, and function cha(m, t) to obtain the target method of
calling method m on a receiver object of run-time type t.

We specify the analysis in terms of the data (Γ, τinit , J K, calls) in Section 3.
Abstract states τ ∈ Γ in our analysis are abstract environments ptsV that track
points-to sets of locals. Our analysis uses allocation sites for abstract memory
locations. Thus, points-to sets are sets of allocation sites. The lattice operations
are standard, for instance, the join operation takes the pointwise union of points-
to sets:

⊔
{ptsV1, ..., ptsVn} = λv.

⋃n
i=1 ptsVi(v). The second component τinit is

the abstract environment λv.∅ which initializes all locals to empty points-to sets.
The remaining two components J K and calls are shown in Figure 7. We elaborate
upon them next. Equations (8)–(14) show the effect of each statement on points-

brief description classes methods bytecode (KB) KLOC
app total app total app total app total

antlr parser/translator generator 109 1,091 873 7,220 81 467 26 224
avrora microcontroller simulator/analyzer 78 1,062 523 6,905 35 423 16 214
bloat bytecode optimization/analysis tool 277 1,269 2,651 9,133 195 586 59 258
chart graph plotting tool and pdf renderer 181 1,756 1,461 11,450 101 778 53 366
hsqldb SQL relational database engine 189 1,341 2,441 10,223 190 670 96 322
luindex text indexing tool 193 1,175 1,316 7,741 99 487 38 237
lusearch text search tool 173 1,157 1,119 7,601 77 477 33 231
pmd Java source code analyzer 348 1,357 2,590 9,105 186 578 46 247
sunflow photo-realistic rendering system 165 1,894 1,328 13,356 117 934 25 419
xalan XSLT processor to transform XML 42 1,036 372 6,772 28 417 9 208

Table 1: Program statistics by flow and context insensitive call graph analysis (0CFAI).

to sets of locals. We explain the most interesting ones. Equation (12) states that
cast statement v′ = (t) v sets the points-to set of local v′ after the statement
to those allocation sites in the points-to set of v before the statement that are
subtypes of t. Equations (13) and (14) are transfer functions for statements
that read globals and fields. Since ptsV tracks points-to information only for
locals, we use separate data ptsG and ptsF to track points-to information for
globals and fields, respectively. These data are updated by transfer functions for
statements that write globals and fields, shown in Equations (16) and (17). Since
the transfer functions both read and write data ptsG and ptsF, the algorithm for
our combined points-to and call graph analysis has an outer loop that calls the
SBA algorithm from Section 3 until ptsG and ptsF reach a fixpoint, starting with
empty data for them in the initial iteration, λg.∅ and λ(h, f).∅. This outer loop
implements a form of the reduced product [CC79] of our flow-sensitive points-to
analysis for locals and the flow-insensitive analysis for globals and fields.2 It is
easy to see that the resulting algorithm terminates as Γ is finite.

Finally, in addition to points-to information, our analysis produces a context
sensitive call graph, denoted by a set cg containing each tuple (τ1, e, τ2,m) such
that the call at control-flow edge e in context τ1 of its containing method may
call the target method m in context τ2. It is straightforward to compute this
information by instrumenting the SBA algorithm to add tuple (τ1, e, τ2,m) to cg
whenever it visits a call site e in context τ1 and computes a target method m
and a target context τ2.

5 Empirical Evaluation

We evaluated various interprocedural approaches on our pointer analysis using
ten Java programs from the DaCapo benchmark suite (http://dacapobench.org),
shown in Table 1. All experiments were done using Oracle HotSpot JVM 1.6.0
on a Linux machine with 32GB RAM and AMD Opteron 3.0GHz processor. We
also measured the precision of these approaches on three different clients of the
pointer analysis. We implemented all our approaches and clients using the Chord

2 We used flow-insensitive analysis for globals and fields to ensure soundness under
concurrency—many programs in our experiments are concurrent.

http://dacapobench.org

kind of implementation context sensitivity degree (k) flow sensitivity for locals?

SBAS RHS ∞ yes
0CFAS RHS 0 yes
kCFAI BDD 0,1,2 no

Table 2: Interprocedural approaches evaluated in our experiments.

program analysis platform for Java bytecode (http://jchord.googlecode.com).
We next describe the various approaches and clients.

Interprocedural Approaches. The approaches we evaluated are shown in
Table 2. They differ in three aspects: (i) the kind of implementation (tabula-
tion algorithm from [RHS95] called RHS for short vs. BDD); (ii) the degree of
call-strings context sensitivity (i.e., the value of k); and (iii) flow sensitive vs.
flow insensitive tracking of points-to information for locals. The approach in
Section 4 is the most precise one, SBAS. It is a non-distributive summary-based
approach that yields unbounded k-CFA context sensitivity, tracks points-to in-
formation of locals flow sensitively, and does heap updates context sensitively. It
is implemented using RHS. Doing context sensitive heap updates entails SBAS

calling the tabulation algorithm repeatedly in an outer loop that iterates un-
til points-to information for globals and fields reaches a fixpoint (each iteration
of this outer loop itself executes an inner loop—an invocation of the tabulation
algorithm—that iterates until points-to information for locals reaches a fixpoint).
We confirmed that the non-distributive aspect (i.e., the lossy join) is critical to
the performance of our RHS implementation: it ran out of memory on all our
benchmarks without lossy join. In fact, the lossy join even obviated the need for
other optimizations in our RHS implementation, barring only the use of bitsets
to represent points-to sets.

It is easy to derive the remaining approaches in Table 2 from SBAS. 0CFAS

is the context insensitive version of SBAS. It also uses the RHS implementation
and leverages the flow sensitive tracking of points-to information of locals in the
tabulation algorithm. We could not scale the RHS implementation to simulate
k-CFA for k > 0. Hence, our evaluation includes a non-RHS implementation:
an optimized BDD-based one that tracks points-to information of locals flow
insensitively but allows us to do bounded context sensitive k-CFA for k > 0.
Even this optimized implementation, however, ran out of memory on all our
benchmarks beyond k = 2. Nevertheless, using it up to k = 2 enables us to gauge
the precision and performance of a state-of-the-art bounded k-CFA approach.

To summarize, the relative precision of the approaches we evaluate is: SBAS �
0CFAS � 0CFAI and SBAS � 2CFAI � 1CFAI � 0CFAI. In particular, the only
incomparable pairs are (0CFAS, 1CFAI) and (0CFAS, 2CFAI).

Pointer Analysis Clients. We built three clients that use the result of our
pointer analysis: downcast safety, call graph reachability, and monomorphic call
site inference. The result used by these clients is the context sensitive call graph,
cg ⊆ (C × E × C ×M), and context sensitive points-to sets of locals at each
program point, pts ∈ (N × C) → Γ, where contexts c ∈ C are abstract envi-
ronments (in domain Γ) for the SBA∗ approaches and bounded call strings (in

http://jchord.googlecode.com

domain Π) for the CFA∗ approaches. The above result signatures are the most
general, for instance, a context insensitive approach like 0CFAI may use a degen-
erate C containing a single context, and a flow insensitive approach like kCFAI

may ignore program point n in pts(n, c), giving the same points-to information
at all program points for a local variable of a method under context c. We next
formally describe our three clients using the above results.

Downcast Safety. This client statically checks the safety of downcasts. A
safe downcast is one that cannot fail because the object to which it is applied is
guaranteed to be a subtype of the target type. Thus, safe downcasts obviate the
need for run-time cast checking. We define this client in terms of the downcast
predicate: downcast(e) ⇐⇒ ∃c : { type(h) | h ∈ pts(n, c)(v) } * sub(t), where
the command at control-flow edge e with origin(e) = n is a cast statement
v′ = (t) v. The predicate checks if the type of some allocation site in the points-
to set of v is not a subtype of the target type t. Each query to this client is a
cast statement at e in the program. It is proven by an analysis if downcast(e)
evaluates to false using points-to information pts computed by the analysis.

Call Graph Reachability. This client determines pairwise reachability be-
tween every pair of methods. The motivation is that the different approaches
in Table 2 may not differ much in broad statistics about the size of the call
graph they produce, such as the number of reachable methods, but they can
differ dramatically in the number of paths in the graph. This metric in turn may
significantly impact the precision of call graph clients.

We define this client in terms of the reach predicate:

reach(m,m′) ⇐⇒ ∃c, e, c′ : method(e) = m ∧ (c, e, c′,m′) ∈ R,
(where R = leastFix λX. (cg ∪ {(c, e, c′′,m) | ∃c′,m′, e′ : method(e′) = m′ ∧

(c, e, c′,m′) ∈ X ∧ (c′, e′, c′′,m) ∈ cg})).

The above predicate is true if there exists a path in the context sensitive call
graph from m to m′. The existence of such a path means that it may be possible
to invoke m′ while m is on the call stack, either directly or transitively from a
call site in the body m. Each query to this client is a pair of methods (m,m′)
in the program. This query is proven by an analysis if reach(m,m′) evaluates to
false using the call graph cg computed by that analysis—no path exists from m
to m′ in the graph.

Monomorphic Call Inference. Monomorphic call sites are dynamically
dispatched call sites with at most one target method. They can be transformed
into statically dispatched ones that are cheaper to run. We define a client to
statically infer such sites, in terms of the polycall predicate: polycall(e) ⇐⇒
|{ m | ∃c, c′ : (c, e, c′,m) ∈ cg}| > 1, where the command at control-flow edge
e is a dynamically dispatching call. Each query to this client is a dynamically
dispatched call site e in the program. The query is proven by an analysis if
polycall(e) evaluates to false using call graph cg computed by that analysis.

We next summarize our evaluation results, including precision, interesting
statistics, and scalability of the various approaches on our pointer analysis and
its three clients described above.

 0

 20

 40

 60

 80

 100

a
n

tl
r

a
v

ro
ra

b
lo

a
t

c
h

a
rt

h
s

q
ld

b

lu
in

d
e

x

lu
s

e
a

rc
h

p
m

d

s
u

n
fl

o
w

x
a

la
n

1
1

.9

1
1

.7

2
4

.5

2
2

.2

1
9

.2

1
3

.1

1
2

.7

1
4

.9

2
6

.3

1
1

.5

%
 p

ro
v

e
n

 q
u

e
ri

e
s

#queries (times 100)

0CFA
I

1CFA
I

2CFA
I

0CFA
S

SBA
S

(a) Downcast safety.

 0

 20

 40

 60

 80

 100

a
n

tl
r

a
v

ro
ra

b
lo

a
t

c
h

a
rt

h
s

q
ld

b

lu
in

d
e

x

lu
s

e
a

rc
h

p
m

d

s
u

n
fl

o
w

x
a

la
n

2
6

.0

2
3

.8

4
1

.7

6
5

.4

5
2

.2

3
0

.0

2
8

.8

4
1

.4

8
9

.0

2
2

.9

#queries (times 100,000)

(b) Call graph reachability.

 0

 20

 40

 60

 80

 100

a
n

tl
r

a
v

ro
ra

b
lo

a
t

c
h

a
rt

h
s

q
ld

b

lu
in

d
e

x

lu
s

e
a

rc
h

p
m

d

s
u

n
fl

o
w

x
a

la
n

1
8

.3

1
5

.1

2
7

.7

2
7

.4

2
6

.0

1
8

.0

1
6

.9

2
0

.3

3
0

.0

1
4

.9

#queries (times 1,000)

(c) Monomorphic inference.

Fig. 8: Precision of various interprocedural approaches on clients of pointer analysis.

antlr avrora bloat chart hsqldb luindex lusearch pmd sunflow xalan

number of edges
in call graph

as % of 0CFAI

0CFAI 26,871 25,427 42,766 41,655 38,703 28,064 27,978 32,447 49,502 25,037
1CFAI 95.8 96.3 96.4 96.0 92.5 96.3 96.7 96.8 94.2 96.3
2CFAI 93.6 93.9 94.7 94.6 90.8 94.0 94.3 94.7 91.7 93.8
0CFAS 98.0 98.6 98.6 81.3 97.2 98.7 98.7 98.2 95.6 98.6
SBAS 91.4 91.5 92.4 75.8 87.4 91.9 91.6 91.9 86.8 91.5

number of
reachable methods

as % of 0CFAI

0CFAI 7,220 6,905 9,133 11,450 10,223 7,741 7,601 9,105 13,356 6,772
1CFAI 98.7 99.0 99.1 99.0 99.1 99.0 99.1 99.2 99.2 99.0
2CFAI 98.0 98.3 98.6 98.6 98.5 98.4 98.4 98.7 98.6 98.3
0CFAS 98.9 99.2 99.2 81.8 98.1 99.3 99.3 99.1 95.9 99.2
SBAS 96.8 97.1 97.3 80.3 96.6 97.3 97.3 97.4 94.4 97.1

total # contexts
total # methods

1CFAI 5.3 5.1 6.9 5.2 5.1 5.1 5.1 5.0 4.9 5.1
2CFAI 41.9 41.8 54.6 35.7 34.3 38.8 39.9 35.9 31.5 42.4
SBAS 6.7 6.4 9.9 7.2 6.6 6.4 6.2 6.8 7.4 6.4

Table 3: Statistics of call graphs computed by various interprocedural approaches.

Precision on Clients. Figure 8 shows the precision of the approaches on the
three clients. We measure the precision of an approach on a client in terms of
how many queries posed by the client can be proven by the approach on each
benchmark. The total number of queries is shown at the top. For instance, for
antlr, there are 11.9× 102 queries by the downcast safety client.

The stacked bars in the plots show the fraction of queries proven by the var-
ious approaches. We use separate bars for the flow-insensitive and flow-sensitive
approaches, and vary only the degree of context sensitivity within each bar. At
the base of each kind of bar is the fraction of queries proven by the context
insensitive approaches (0CFAI and 0CFAS). The bars stacked above them de-
note fractions of queries proven exclusively by the indicated context sensitive
approaches. For instance, for the downcast safety client on antlr, the left bar
shows that 0CFAI proves 32% queries, 1CFAI proves an additional 15% queries
(for a total of 47% proven queries), and 2CFAI proves another 3% queries (for
a total of 50% proven queries). The right bar shows that 0CFAS proves 34%
queries, and SBAS proves an additional 20% queries (for a total of 54% proven
queries). We next briefly summarize the results.

The SBAS approach is theoretically the most precise of all five approaches.
Compared to the next most precise approach 2CFAI, it proves 12% more down-

antlr avrora bloat chart hsqldb luindex lusearch pmd sunflow xalan

0CFAI 1m45s 1m42s 3m10s 4m40s 3m29s 2m34s 2m22s 3m52s 5m00s 2m32s
1CFAI 40m 38m 82m 121m 74m 41m 43m 61m 148m 36m
2CFAI 72m 68m 239m 256m 158m 83m 80m 112m 279m 82m
0CFAS 23m 26m 38m 30m 34m 35m 24m 34m 58m 23m
SBAS 21m 17m 60m 51m 37m 27m 16m 29m 72m 16m

Table 4: Running time of pointer analysis using various approaches.

cast safety queries on average per benchmark, and 9% more call graph reacha-
bility queries, but only 0.6% more monomorphic call site inference queries. The
largest gain of SBAS over 2CFAI is 21.3%, and occurs on bloat for the call graph
reachability client. The relatively lower benefit of increased context sensitivity
for the monomorphic call site inference client is because the context insensitive
approaches are themselves able to prove over 90% of the queries by this client on
each benchmark. We also observe that 0CFAS proves only slightly more queries
than 0CFAI for each client on each benchmark, suggesting that flow sensitivity is
ineffective without an accompanying increase in context sensitivity. In particular,
with the exception of chart, 0CFAS proves less queries than 1CFAI.

Call Graph Statistics. We found it instructive to study various statistics
of the call graphs computed by the different approaches. The first two sets of
rows in Table 3 show the number of reachable methods and the number of edges
in the call graphs computed by the different approaches. Both decrease with
an increase in the precision of the approach, as expected. But the reduction is
much smaller compared to that in the number of unproven queries for the call
graph reachability client, shown in Figure 8(b). An unproven reach(m,m′) query
indicates the presence of one or more paths in the call graph from m to m′ and
the higher the number of such unproven queries, the higher the number of paths
in the call graph. The average reduction in the number of such unproven queries
from 0CFAI to SBAS is 41%, but the corresponding average reduction in the
number of call graph edges is only 10.8%, and that in the number of reachable
methods is even smaller, at 4.8%. From these numbers, we conclude that the
various approaches do not differ much in coarse-grained statistics of the call
graphs they produce (e.g., the number of reachable methods) but they can differ
dramatically in finer-grained statistics (e.g., the number of paths), which in turn
can greatly impact the precision of certain clients.

Scalability. Lastly, we compare the scalability of the different approaches.
Table 4 shows their running time on our pointer analysis, exclusive of the clients’
running time which is negligible. The running time increases from 0CFAI to
2CFAI with large differences between the different flow insensitive approaches.
The similar running times of 0CFAS and SBAS is because of the use of the
tabulation algorithm with almost identical implementation for both. Finally,
SBAS runs much faster than 2CFAI on all benchmarks.

The improved performance of SBAS over 2CFAI can be explained by the
ratio of the number of contexts to that of reachable methods computed by each
approach. This ratio is shown in the bottom set of rows in Table 3 for 1CFAI,

2CFAI, and SBAS. (It is not shown for context insensitive approaches 0CFAI

and 0CFAS as it is the constant 1 for them.) These numbers elicit two key
observations. First, the rate at which the ratio increases as we go from 0CFAI

to 2CFAI suggests that call-strings approaches with k ≥ 3 run out of memory
by computing too many contexts. Second, 2CFAI computes almost 4X-7X more
contexts per method than SBAS on each benchmark, implying that the summary-
based approach used in SBAS is able to merge many call-string contexts.

The primary purpose of the empirical evaluation in this work was to deter-
mine how precise k-CFA can get using arbitrary k. The proof of equivalence
between ∞-CFA and SBA enabled us to use SBAS for this evaluation. However,
other works [MRR05, LH08] have shown that, in practice, using object-sensitivity
[MRR02, SBL11] to distinguish calling contexts for object-oriented programs is
more precise and scalable than k-CFA. Though call string and object-sensitive
contexts are incomparable in theory, an interesting empirical evaluation in fu-
ture work would be to compare the precision of ∞-CFA with analyses using
object-sensitive contexts.

6 Related Work

This section relates our work to existing equivalence results, work on summary-
based approaches, and work on cloning-based approaches of which call-strings
approaches are an instance.

Equivalence Results. Sharir and Pnueli [SP81] prove that the summary-based
and call-strings approaches are equivalent in the finite, distributive setting. They
provide constructive algorithms for both approaches in this setting: an iterative
fixpoint algorithm for the summary-based approach and an algorithm to obtain
a finite bound on the lengths of call strings to be computed for the call-strings
approach. They prove each of these algorithms equivalent to the meet-over-
all-valid-paths (MVP) solution (see Corollary 3.5 and Theorem 5.4 in [SP81]).
Their equivalence proof thus relies on the distributivity assumption. Our work
can be viewed as an extension of their result to the more general non-distributive
setting. Also, they do not provide any empirical results, whereas we measure the
precision and scalability of both approaches on a widely-used pointer analysis,
using real-world programs and clients.

For points-to analyses, Grove and Chambers [GC01] conjectured that Age-
sen’s Cartesian Product Algorithm (CPA) [Age95] is strictly more precise than
∞-CFA, and that SBA(which they refer as SCS for Simple Class Set)has the
same precision as ∞-CFA. The first conjecture was shown to be true by Besson
[Bes09] while we proved that the second conjecture also holds in this work.

Might et al. [MSH10] show the equivalence between k-CFA in the object-
oriented and functional paradigms. The treatment of objects vs. closures in the
two paradigms causes the same k-CFA algorithm to be polynomial in program
size in the object-oriented paradigm but EXPTIME-complete in the functional
paradigm. Our work is orthogonal to theirs. Specifically, our formal setting is ag-
nostic to language features, assuming only a finite abstract domain Γ and mono-

tone transfer functions J K, and indeed instantiating these differently for different
language features can cause the k-CFA algorithm to have different complexity.

Summary-based Interprocedural Analysis. Sharir and Pnueli [SP81] first
proposed using functional summaries to solve interprocedural dataflow problems
precisely. Later, Reps et al. [RHS95] proposed an efficient quadratic represen-
tation of functional summaries for finite, distributive dataflow problems, and
the tabulation algorithm based on CFL-reachability to solve them in cubic time.
More recent works have applied the tabulation algorithm in non-distributive set-
tings, ranging from doing a fully lossy join to a partial join to a lossless join. All
these settings besides lossy join are challenging to scale, and either use symbolic
representations (e.g., BDDs in [BR01]) to compactly represent multiple abstract
states, or share common parts of multiple abstract states without losing preci-
sion (e.g., [YLB+08, MSRF04]) or at the expense of precision (e.g., [BPR01]).
Summary-based approaches like CFA2 [VS10] have also been proposed for func-
tional languages to perform fully context-sensitive control-flow analysis. Our
work is motivated by the desire to understand the formal relationship between
the widely-used summary-based approach in non-distributive settings and the
call-strings approach, which is also prevalent as we survey next.

Cloning-based Interprocedural Analysis. There is a large body of work
on bounded call-string-like approaches that we collectively call cloning-based ap-
proaches. Besides k-CFA [Shi88], another popular approach is k-object sensitive
analysis for object-oriented programs [MRR02, SBL11]. Many recent works ex-
press cloning-based pointer analyses in Datalog and solve them using specialized
Datalog solvers [Wha07, BS09]. These solvers exploit redundancy arising from
large numbers of similar contexts computed by these approaches for high k val-
ues. They either use BDDs [BLQ+03, WL04, ZC04] or explicit representations
from the databases literature [BS09] for this purpose. Most cloning-based ap-
proaches approximate recursion in an ad hoc manner. An exception is the work
of Khedker et al. [KMR12, KK08] which maintains a single representative call
string for each equivalence class. Unlike the above approaches, it does not ap-
proximate recursion in an ad hoc manner, and yet it is efficient in practice by
avoiding the computation of redundant call-string contexts. Our pointer analysis
achieves a similar effect but by using the tabulation algorithm.

7 Conclusion

We showed the equivalence between the summary-based and unbounded call-
strings approaches to interprocedural analysis, in the presence of a lossy join.
Our result extends the formal relationship between these approaches to a set-
ting more general than the distributive case in which this result was previously
proven. We presented new implications of our result to the theory and practice of
interprocedural analysis. On the theoretical side, we introduced new proof tech-
niques that enable to reason about relationships that do not hold between two
fixpoint computations at each step, but do so when a form of garbage collection
is applied to the final results of those computations. On the practical side, we

empirically compared the summary-based and bounded call-strings approaches
on a widely-used pointer analysis with a lossy join. We found the summary-based
approach on this analysis is more scalable while providing the same precision as
the unbounded call-strings approach.

Acknowledgement. We thank the anonymous reviewers for insightful com-
ments. This work was supported by DARPA under agreement #FA8750-12-2-
0020, NSF award #1253867, gifts from Google and Microsoft, and EPSRC. The
U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.

References

[Age95] Ole Agesen. The cartesian product algorithm. In ECOOP. 1995.
[Bes09] Frédéric Besson. CPA beats ∞-CFA. In FTfJP, 2009.

[BLQ+03] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis using
BDDs. In PLDI, 2003.

[BPR01] T. Ball, A. Podelski, and S. Rajamani. Boolean and cartesian abstraction for model
checking C programs. In TACAS, 2001.

[BR01] T. Ball and S. Rajamani. Bebop: a path-sensitive interprocedural dataflow engine. In
PASTE, 2001.

[BS09] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In OOPSLA, 2009.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL,
1979.

[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2(4), 1992.

[FYD+08] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verification
in the presence of aliasing. ACM TOSEM, 17(2), 2008.

[GC01] David Grove and Craig Chambers. A framework for call graph construction algorithms.
ACM TOPLAS, 23(6), 2001.

[KK08] U. Khedker and B. Karkare. Efficiency, precision, simplicity, and generality in interpro-
cedural dataflow analysis: Resurrecting the classical call strings method. In CC, 2008.

[KMR12] U. Khedker, A. Mycroft, and P. Rawat. Liveness-based pointer analysis. In SAS, 2012.
[LH08] O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive points-to analysis

using a BDD-based implementation. ACM TOSEM, 18(1), 2008.
[Min06] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,

19(1), 2006.
[MRR02] A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensitivity for points-to

and side-effect analyses for Java. In ISSTA, 2002.
[MRR05] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity

for points-to analysis for Java. ACM TOSEM, 14(1), 2005.
[MSH10] M. Might, Y. Smaragdakis, and D. Horn. Resolving and exploiting the k-CFA paradox:

illuminating functional vs. oo program analysis. In PLDI, 2010.
[MSRF04] R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap ab-

straction. In SAS, 2004.
[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph

reachability. In POPL, 1995.
[SBL11] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts well: understanding

object-sensitivity. In POPL, 2011.
[Shi88] O. Shivers. Control-flow analysis in scheme. In PLDI, 1988.
[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In

Program Flow Analysis: Theory and Applications, chapter 7. Prentice-Hall, 1981.
[VS10] D. Vardoulakis and O. Shivers. CFA2: A Context-Free Approach to Control-Flow Anal-

ysis. In ESOP, 2010.
[Wha07] J. Whaley. Context-Sensitive Pointer Analysis using Binary Decision Diagrams. PhD

thesis, Stanford University, March 2007.
[WL04] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams. In PLDI, 2004.
[YLB+08] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn.

Scalable shape analysis for systems code. In CAV, 2008.
[ZC04] J. Zhu and S. Calman. Symbolic pointer analysis revisited. In PLDI, 2004.

Appendix

A Proofs of Lemmas

A.1 Lemma 1

Lemma 1. For all σ and κ, if σ v R(η, κ), then L(η, σ) v κ.

Proof. Pick any σ and κ. Suppose that σ v R(η, κ). Then, σ(p, τ) v R(η, κ)(p, τ)
for all p, τ . By the definition of R, this means that for all p, τ, π, if τ v η(p, π),
then σ(p, τ)vκ(p, π). By setting τ = η(p, π), we can derive from this implication
the formula: ∀p, π : σ(p, η(p, π)) v κ(p, π). We rephrase this formula using L:
∀p, π : L(η, σ)(p, π) v κ(p, π). The rephrase formula gives the desired conclusion
L(η, σ) v κ. ut

Remark 1. The opposite direction of Lemma 1 holds only if σ is monotone in
the following sense: for all p, τ, τ ′, if τ v τ ′, then σ(p, τ) v σ(p, τ ′). In fact, there
is a function R′(η,−) : Acfa → Asba that gives the equivalence without this
proviso on monotonicity: R′(η, κ) = λ(p, τ).

d
{κ(p, π) | τ = η(method(p), π)}.

We do not use R′ because R(η, κ) is always monotone but R′(η, κ) is not. This
monotonicity is exploited in our proof of our Correspondence Theorem.

A.2 Lemma 2

Lemma 4. σsba(p,⊥) = ⊥ for all p ∈ P.

Proof. This lemma holds because σI and the smallest SBA annotation

λ(p, τ).⊥

are strict, and both t and Fsba preserve strictness: if σ and σ′ are strict, so are
σ ∪ σ′ and Fsba(σ). ut

Lemma 2. There exists a unique translation function η : M×P→ Γ such that
for all m ∈M, e ∈ E and π ∈ Π,

η(mmain ,mmain) = τinit ,

η(m,m⊕ e⊕ π) =
if (callEdge(e) ∧

m ∈ calls(stmt(e), σsba(origin(e), η(method(e), π))))
then σsba(origin(e), η(method(e), π)) else ⊥,

η(m,π) = ⊥ (for all the other cases).

We denote this translation with ηsba.

Proof. First, we show the existence. Let ηsba be the least upper bound of a
sequence {ηn}n≥0:

η(m,π) =
⊔
{ηn(m,π) | n ≥ 0}

where η0 is the constant map λ(p, π).⊥ and ηn+1 is defined by:

ηn+1(mmain ,mmain) = τinit

ηn+1(m,m⊕ e⊕ π) =
if (callEdge(e) ∧

m ∈ calls(stmt(e), σsba(origin(e), ηn(method(e), π))))
then σsba(origin(e), ηn(method(e), π)) else ⊥
ηn+1(m,π) = ⊥ (for all the other cases).

We will show that η satisfies the properties described in the lemma. Since
ηn(mmain ,mmain) = τinit for all n ≥ 1 and η0(mmain ,mmain) = ⊥,

ηsba(mmain ,mmain) = τinit .

For the other properties, we will show that

∀n,m, π : ηn(m,π) 6=⊥ =⇒ ∀k≥n : ηk(m,π) = ηn(m,π). (18)

Before presenting the proof of this formula, let us explain why the formula
gives the desired properties of η. Our starting point is the second property.
Suppose that the formula in (18) is true. Then,

∀m,π : ∃n : ∀k ≥ n : η(m,π) = ηk(m,π).

Now pick e ∈ E, π ∈ Π and m ∈M such that

callEdge(e) ∧
m ∈ calls(stmt(e), σsba(origin(e), η(method(e), π))).

By what we have just discussed, there exists a non-negative integer n such that

∀k ≥ n : η(method(e), π) = ηk(method(e), π) ∧
η(m,m⊕ e⊕ π) = ηk(m,m⊕ e⊕ π).

(19)

Since η(method(e), π) = ηn(method(e), π),

m ∈ calls(stmt(e), σsba(origin(e), ηn(method(e), π))).

By the definition of ηn+1, we have that

ηn+1(m,m⊕ e⊕ π) = σsba(origin(e), ηn(method(e), π)).

Using (19), we can conclude that

η(m,m⊕ e⊕ π) = σsba(origin(e), η(method(e), π)),

which is the desired equality. We also have to consider the case that e ∈ E,
π ∈ Π and m ∈M but the following does not hold:

callEdge(e) ∧
m ∈ calls(stmt(e), σsba(origin(e), η(method(e), π))).

As before, let n be the same value satisfying (19). Then, for all k ≥ n, the
following statement does not hold:

callEdge(e) ∧
m ∈ calls(stmt(e), σsba(origin(e), ηk(methodk(e), π))).

Hence, ηk+1(m,m⊕ e⊕ π) = ⊥. This implies that

η(m,m⊕ e⊕ π) = ⊥

as well. For the proof of the third property, pick m,π such that

(m,π) 6= (mmain ,mmain) ∧ ¬∃e, π′ : (m,π) 6= (m,m⊕ e⊕ π′).

Then, ηn(m,π) = ⊥ for all n. Hence, η(m,π) = ⊥.
Let us now go back to the proof of (18). Our proof is by the induction on n

in ηn.

1. Base case n = 0: In this case, ηn(m,π) = ⊥ for all m and π. Hence, (18)
follows vacuously.

2. Inductive case n > 0: Assume that

ηn(m,π) 6= ⊥.

By the definition of ηn, this can happen only under two cases: (i) π = mmain

and m = mmain ; or (ii) π = m⊕ e⊕ π1 for some e, π1 such that

callEdge(e) ∧
m ∈ calls(stmt(e), σsba(origin(e), ηn−1(method(e), π1))).

(20)

If π = mmain and m = mmain ,

∀k ≥ 1 : ηk(m,π) = τinit .

This gives the desired conclusion. Now consider the other case. Let e, π1 be
the entities satisfying (20). Since

calls(stmt(e),⊥) = ∅,

the second conjunct of (20) implies that

σsba(origin(e), ηn−1(method(e), π1)) 6= ⊥.

By Lemma 4,
ηn−1(method(e), π1) 6= ⊥.

Then, by the induction hypothesis,

∀k ≥ n− 1 : ηn−1(method(e), π1) = ηk(method(e), π1).

This implies that

∀k ≥ n :

m ∈ calls(stmt(e), σsba(origin(e), ηk−1(method(e), π1))).

Using this formula, we infer that for all k ≥ n,

ηk(m,m⊕ e⊕ π1)

= σsba(origin(e), ηk−1(method(e), π1))

= σsba(origin(e), ηn−1(method(e), π1))

= ηn(m,m⊕ e⊕ π1).

We have just shown the desired equality.

Next, we prove the uniqueness. This can be easily proved by induction on the
length of π in η(m,π). This is because the conditions in the lemma are inductive
on π in the sense that the defining clauses of η(m,π) either do not mention π or
useη(m,π′) with strictly shorter suffices π′ of π. ut

A.3 Lemma 3

Lemma 3. For all SBA annotations σ, if σ is monotone, Gsba(σ) v σ and

∀m : τ v σ(entry(m), τ),

then σsba v σ.

Proof. Let G = (λσ. σ t Fsba(σ)). Recall that σsba is defined as the fixpoint
(or stable element) of the sequence G0(σI), G

1(σI), G
2(σI), G

3(σI), . . . Let Ln =
Gn(σI). We will prove that for all n ≥ 0,

Ln v σ.

Our proof is by induction on n. When n = 0, our assumption gives L0 = σI v σ,
as desired. Assume that n > 0. By induction hypothesis, we have that Ln−1 v σ.
This means that to prove Ln v σ, it is sufficient to show that

Fsba(L
n−1) v σ.

Let p ∈ P and τ ∈ Γ. When p is a non-entry node or a non-call edge, the desired

Fsba(L
n−1)(p, τ) v σ(p, τ)

follows from the monotonicity of t and JsK for every statement s ∈ A ∪ I, and
the facts that Fsba(σ)(p, τ) v σ(p, τ) and Ln−1 v σ. When p is an entry node
of a method, Fsba(L

n−1)(p, τ) is either ⊥ or τ . In both cases, Fsba(L
n−1)(p, τ) v

σ(p, τ), because τ ′ v σ(entry(m), τ ′) for every m and τ ′. The only remaining
case is that p is a call edge. In this case, Fsba(L

n−1)(p, τ) is defined as the join
of a set described at the bottom of Figure 5 (modulo the replacement of e and σ
by p and Ln−1 in the figure). Let Γ be this set. Similarly, Fsba(σ)(p, τ) is defined
as the join of a similar set Γ ′. It is sufficient to show that

∀τ ′ ∈ Γ : ∃τ ′′ ∈ Γ ′ : τ ′ v τ ′′.

Pick τ ′ from Γ . Then, there exist τ1,m such that τ1 = Ln−1(origin(p), τ),
m ∈ calls(stmt(p), τ1) and τ ′ = Ln−1(exit(m), τ1). Since Ln−1 v σ and calls
is monotone, there exists τ ′1 such that τ1 v τ ′1, τ ′1 = σ(origin(p), τ) and m ∈
calls(stmt(p), τ ′1). Furthermore, since Ln−1 v σ and σ is monotone,

τ ′ = Ln−1(exit(m), τ1) v σ(exit(m), τ1) v σ(exit(m), τ ′1).

Let τ ′′=σ(exit(m), τ ′1). What we have shown so far implies τ ′′ ∈Γ ′∧τ ′′w τ ′. ut

B Proof of the Correspodence Theorem

In this section, we present the full proof of the Correspondence Theorem (The-
orem 2).

B.1 Step One

The aim of this subsection is to prove the following proposition.

Proposition 1. κcfa v L(ηsba, σsba).

To achieve our aim, we will develop a method for transferring pre-fixpoints
of λσ. σI tFsba(σ) to those of λκ. κI tFcfa(κ). Concrete, we identify a sufficient
condition on a translation function η for ensuring that the result of the ∞-
CFA analysis is at least as precise as that of the SBA analysis if the latter gets
translated by L(η,−). Our condition is based on the following two lemmas, which
together express which η allows transferring correct SBA annotations (i.e., pre-
fixpoints with respect to λσ. σI t Fsba(σ)) to correct ∞-CFA annotations (i.e.,
pre-fixpoints with respect to λκ. κI t Fcfa(κ)).

Lemma 5. For all translation functions η : P×Π→ Γ,

τinit = η(mmain ,mmain) =⇒ κI v L(η, σI).

Proof. Let n0 = entry(mmain) and π0 = mmain . Recall that κI(n, π) = ⊥ unless
(n, π) = (n0, π0). Hence, it suffices to show that κI(n0, π0) v L(η, σI)(n0, π0).
We discharge this proof obligation as follows:

τinit = η(mmain , π0) ⇐⇒ τinit = σI(n0, η(mmain , π0))

⇐⇒ κI(n0, π0) = L(η, σI)(n0, π0).

ut

A translation η is consistent with an SBA annotation σ if for all e ∈ E,
π ∈ Π and m ∈M such that

callEdge(e)

∧m ∈ calls(stmt(e), σ(origin(e), η(method(e), π))),

we have
η(m,m⊕ e⊕ π) = σ(origin(e), η(method(e), π)).

Lemma 6. If a translation η is consistent with an SBA annotation σ,

Fcfa(L(η, σ)) v L(η, Fsba(σ)).

Proof. Assume that a translation η is consistent with an SBA annotation σ. Pick
p, π. We will show that

Fcfa(L(η, σ))(p, π) v L(η, Fsba(σ))(p, π). (21)

We do the case analysis on p.

1. The first case is that p is a node n but not an entry node of a method. In
this case,

Fcfa(L(η, σ))(n, π)

=
⊔
{L(η, σ)(e, π) | n = target(e)}

=
⊔
{σ(e, η(method(e), π)) | n = target(e)}.

Also,

L(η, Fsba(σ))(n, π)

= Fsba(σ)(n, η(method(n), π))

=
⊔
{σ(e, η(method(n), π)) | n = target(e)}.

The desired equality holds because

n = target(e) =⇒ method(n) = method(e).

2. The next case is that p is a entry node entry(m). Let P (e, π1) be the predicate
that asserts the following:

callEdge(e) ∧ π = m⊕ e⊕ π1

∧m ∈ calls(stmt(e), L(η, σ)(origin(e), π1)).
(22)

If we cannot find e, π1 satisfying P (e, π1), then

Fcfa(L(η, σ))(entry(m), π) = ⊥,

which implies the desired inequality in (21). Now assume that P (e, π1) holds
for some e and π1. Then,

Fcfa(L(η, σ))(entry(m), π)

= L(η, σ)(origin(e), π1)

= σ(origin(e), η(method(origin(e)), π1))

= σ(origin(e), η(method(e), π1)).

Here the first equality uses the definition of Fcfa and the property in (22),
and the second equality is the unrolling of the definition of L. Also, in this
case,

L(η, Fsba(σ))(entry(m), π)

= Fsba(σ)(entry(m), η(m,π))

=
⊔
{η(m,π) |
∃e, τ1 : η(m,π) = σ(origin(e), τ1)
∧m ∈ calls(stmt(e), η(m,π)) ∧ callEdge(e)}.

Hence, to prove

Fcfa(L(η, σ))(entry(m), π) v L(η, Fsba(σ))(entry(m), π),

it suffices to show

η(m,π) = σ(origin(e), η(method(e), π1)).

Since π = m⊕ e⊕ π1, the above equation is equivalen to

η(m,m⊕ e⊕ π1) = σ(origin(e), η(method(e), π1)).

This equality follows from the assumption that η is consistent with σ.
3. The third case is that p is a non-call edge e (i.e., ¬callEdge(e)). In this case,

Fcfa(L(η, σ))(e, π)

= Jstmt(e)K(L(η, σ)(origin(e), π))

= Jstmt(e)K(σ(origin(e), η(method(origin(e)), π)))

= Jstmt(e)K(σ(origin(e), η(method(e), π))).

Also,

L(η, Fsba(σ))(e, π)

= Fsba(σ)(e, η(method(e), π))

= Jstmt(e)K(σ(origin(e), η(method(e), π))).

We have just shown that

Fcfa(L(η, σ))(e, π) = L(η, Fsba(σ))(e, π),

a fact stronger than what we are required to show here.

4. The last case is that p is a call edge e (i.e., callEdge(e)). Let κ = L(η, σ).
Then,

Fcfa(L(η, σ))(e, π)

=
⊔
{L(η, σ)(exit(m),m⊕ e⊕ π) |
m ∈ calls(stmt(e), L(η, σ)(origin(e), π))}

=
⊔
{σ(exit(m), η(m,m⊕ e⊕ π)) |
m ∈ calls(stmt(e), σ(origin(e), η(method(e), π)))}

=
⊔
{σ(exit(m), σ(origin(e), η(method(e), π))) |
m ∈ calls(stmt(e), σ(origin(e), η(method(e), π)))}

= Fsba(σ)(e, η(method(e), π))

= L(η, Fsba(σ))(e, π).

The third equality holds because η is consistent with σ and e is a call edge.
ut

Lemma 7. ηsba is consistent with σsba and

τinit = ηsba(entry(mmain),mmain).

Proof. This is an immediate consequence of Lemma 2. ut

Proposition 1. κcfa v L(ηsba, σsba).

Proof. Since σsba is the result of the SBA analysis,

σI v σsba ∧ Fsba(σsba) v σsba.

By Lemma 7, ηsba is consistent with σsba and

τinit = ηsba(entry(mmain),mmain).

Hence, by Lemma 5 and the monotonicity of L(ηsba,−),

κI v L(ηsba, σI) v L(ηsba, σsba).

Also, by Lemma 6 and the monotonicity of L(ηsba,−),

Fcfa(L(η, σsba)) v L(η, Fsba(σsba)) v L(η, σsba).

We have just shown that L(η, σsba) is a pre-fixpoint of λκ. κI tFcfa(κ). Since κcfa
is the least pre-fixpoint, we have

κcfa v L(η, σsba).

ut

B.2 Step Two

The purpose of this subsection is to show the following proposition:

Proposition 2. σsba v R(ηcfa, κcfa).

As in the previous subsection, we develop a sufficient condition that R(η, κ)
satisfies all the three conditions in (3). Then, we will show that this condition
holds for ηcfa and κcfa.

Lemma 8. For all translations η : P×Π→ Γ, if

η(mmain ,mmain) = τinit

∧ (∀π : π 6= mmain =⇒ η(mmain , π) = ⊥)

then
σI v R(η, κI).

Proof. Consider η satisfying the assumption of the lemma. Let n0 = entry(mmain).
Recall that σI(n, τ) = ⊥ unless (n, τ) = (n0, τinit). Hence, it suffices to show that

σI(n0, τinit) v R(η, κI)(n0, τinit),

which is equivalent to
τinit v R(η, κI)(n0, τinit).

By the definition of R,

R(η, κI)(n0, τinit) =
l
{κI(n0, π) | τinit v η(method(n0), π)}.

Hence, it suffices to show that for every π,

τinit v η(method(n0), π) =⇒ τinit v κI(n0, π).

By the assumption of the lemma, τinit v η(method(n0), π) can happen only if
π = mmain . Furthermore, κI(n0,mmain) = τinit . The desired inequality, hence,
follows. ut

A translation η is consistent with an ∞-CFA annotation κ if the fol-
lowing two conditions hold:

1. For all m ∈M, e ∈ E and π ∈ Π,

(callEdge(e) ∧m ∈ calls(stmt(e), κ(origin(e), π)))

=⇒ κ(origin(e), π) = η(m,m⊕ e⊕ π).

2. For all m ∈M and π ∈ Π,

(η(m,π) 6= ⊥ ∧m 6= mmain)

=⇒ ∃e′, π′ : π = m⊕ e′ ⊕ π′ ∧ callEdge(e′)
∧m ∈ calls(stmt(e′), κ(origin(e′), π′)).

Lemma 9. For all translations η and ∞-CFA annotations κ, if η is consistent
with κ,

Fsba(R(η, κ)) v R(η, Fcfa(κ)).

Proof. Consider a translation η and an ∞-CFA annotation κ such that η is
consistent with κ. Pick p, τ . We need to prove that

Fsba(R(η, κ))(p, τ) v R(η, Fcfa(κ))(p, τ). (23)

We discharge this proof obligation by doing the case analysis on p.

1. The first case is that p is a node n but not an entry node of any method. In
this case,

Fsba(R(η, κ))(n, τ)

=
⊔
{R(η, κ)(e, τ) | n = target(e)}

=
⊔
{
l
{κ(e, π) | τ v η(method(e), π)} | n = target(e)}.

Also,

R(η, Fcfa(κ))(n, τ)

=
l
{Fcfa(κ)(n, π) | τ v η(method(n), π)}

=
l
{
⊔
{κ(e, π) | n = target(e)} | τ v η(method(n), π)}.

Hence, it suffices to prove the following: for all e, π, if n = target(e) and
τ v η(method(n), π), we have that

l
{κ(e, π′) | τ v η(method(e), π′)}

v
⊔
{κ(e′, π) | n = target(e′)}.

Since τ v η(method(n), π) and n = target(e),

τ v η(method(e), π).

Hence,

(
l
{κ(e, π′) | τ v η(method(e), π′)}) v κ(e, π)

∧ κ(e, π) v (
⊔
{κ(e′, π) | n = target(e′)}).

This gives the desired inequality.
2. The next case is that p is an entry node entry(m). Let P (e, τ1) be the

predicate that asserts the following:

callEdge(e) ∧ τ = R(η, κ)(origin(e), τ1)

∧m ∈ calls(stmt(e), τ).
(24)

If we cannot find e, τ1 satisfying P (e, τ1), then

Fsba(R(η, κ))(entry(m), τ) = ⊥,

which implies the desired inequality in (23). Now assume that P (e, τ1) holds
for some e and τ1. Since m ∈ calls(stmt(e), τ), by our requirement on calls,
we have

m 6= mmain .

Also, in this case,
Fsba(R(η, κ))(entry(m), τ) = τ.

Meanwhile,

R(η, Fcfa(κ))(entry(m), τ)

=
l
{Fcfa(κ)(entry(m), π) | τ v η(m,π)}

Thus, we can prove the desired inequality in (23) by showing that for all π,
if τ v η(m,π),

τ v Fcfa(κ)(entry(m), π).

Since m ∈ calls(stmt(e), τ),
τ 6= ⊥.

Pick π such that τ v η(m,π). Then,

η(m,π) 6= ⊥.

Since m 6= mmain , the consistency of η with κ implies

∃e′, π′ : π = m⊕ e′ ⊕ π′

∧ callEdge(e′) ∧m ∈ calls(stmt(e′), κ(origin(e′), π′)).

Again by the consistency of η with κ, this entails

κ(origin(e′), π′) = η(m,m⊕ e′ ⊕ π′) = η(m,π).

From this fact, we derive that

Fcfa(κ)(entry(m), π) w κ(origin(e′), π′)

= η(m,π) w τ.

3. The third case is that p is a non-call edge e (i.e., ¬callEdge(e)). In this case,

Fsba(R(η, κ))(e, τ)

= Jstmt(e)K(R(η, κ)(origin(e), τ))

= Jstmt(e)K(
l
{κ(origin(e), π) | τ v η(method(e), π)}).

Also,

R(η, Fcfa(κ))(e, τ)

=
l
{Fcfa(κ)(e, π) | τ v η(method(e), π)}

=
l
{Jstmt(e)K(κ(origin(e), π)) | τ v η(method(e), π)}.

Hence, it suffices to prove that for all π0, if

τ v η(method(e), π0),

then

Jstmt(e)K(
l
{κ(origin(e), π) | τ v η(origin(e), π)})

v Jstmt(e)K(κ(origin(e), π0)).

Pick such π0. The desired inequality above holds because τ v η(method(e), π0)
and Jstmt(e)K is monotone.

4. The last case is that p is a call edge e (i.e., callEdge(e)). In this case,

Fsba(R(η, κ))(e, τ)

=
⊔
{R(η, κ)(exit(m), R(η, κ)(origin(e), τ)) |
m ∈ calls(stmt(e), R(η, κ)(origin(e), τ))}.

Also,

R(η, Fcfa(κ))(e, τ)

=
l
{Fcfa(κ)(e, π) | τ v η(method(e), π)}.

Hence, it is sufficient to prove that for all m0, π0, if

τ v η(method(e), π0)

∧m0 ∈ calls(stmt(e), R(η, κ)(origin(e), τ))

then
R(η, κ)(exit(m0), R(η, κ)(origin(e), τ))

v Fcfa(κ)(e, π0).
(25)

Pick m0, π0 satisfying the assumptions in the above implication. Since τ v
η(method(e), π0), we have

τ v η(method(origin(e)), π0),

which implies that

R(η, κ)(origin(e), τ) v κ(origin(e), π0).

This gives
m0 ∈ calls(stmt(e), κ(origin(e), π0)), (26)

becausem0 ∈ calls(stmt(e), R(η, κ)(origin(e), τ)) and the function calls(stmt(e),−)
is monotone. One consequence of (26) is that

κ(exit(m0),m0 ⊕ e⊕ π0) v Fcfa(κ)(e, π0).

Hence, to prove (25), we only need to show that

R(η, κ)(exit(m0), R(η, κ)(origin(e), τ))

v κ(exit(m0),m0 ⊕ e⊕ π0).

Fortunately, by the definition of R, this proof obligation follows from a sim-
pler property:

R(η, κ)(origin(e), τ) v η(m0,m0 ⊕ e⊕ π0),

which we prove as follows:

(τ v η(origin(e), π0)
∧ κ(origin(e), π0) = η(m0,m0 ⊕ e⊕ π0))

=⇒ R(η, κ)(origin(e), τ) v η(m0,m0 ⊕ e⊕ π0).

This implication follows from the definition of R.
ut

Recall that ηcfa = λ(m,π). κcfa(entry(m), π).

Lemma 10. ηcfa is consistent with κcfa and

ηcfa(mmain ,mmain) = τinit

∧ (∀π : π 6= mmain =⇒ ηcfa(mmain , π) = ⊥).

Proof. Since κcfa is a fixpoint of λκ. κI t Fcfa(κ), the following properties hold
for ηcfa:

ηcfa(mmain ,mmain) = τinit

ηcfa(m,m⊕ e⊕ π) = if (callEdge(e) ∧
m ∈ calls(stmt(e), κcfa(origin(e), π)))

then κcfa(origin(e), π) else ⊥
ηcfa(m,π) = ⊥ (for all the other cases).

Now it remains to show that satisfying the following three requirements:

1. For all m ∈M, e ∈ E and π ∈ Π,

(callEdge(e) ∧m ∈ calls(stmt(e), κcfa(origin(e), π)))

=⇒ κcfa(origin(e), π) = ηcfa(m,m⊕ e⊕ π).

2. For all m ∈M and π ∈ Π,

(ηcfa(m,π) 6= ⊥ ∧m 6= mmain)

=⇒ ∃e′, π′ : π = m⊕ e′ ⊕ π′ ∧ callEdge(e′)
∧m ∈ calls(stmt(e′), κcfa(origin(e′), π′)).

3. ηcfa(mmain ,mmain) = τinit and

∀π : π 6= mmain =⇒ ηcfa(mmain , π) = ⊥.

The first requirement is an immediate consequence of the properties of ηcfa that
we noticed in the beginning of the proof. To show the second requirement, con-
sider m ∈M and π ∈ Π such that

ηcfa(m,π) 6= ⊥ ∧m 6= mmain .

By the properties of ηcfa in the beginning of this lemma, there exist e′ and π′

such that

π = m⊕ e′ ⊕ π′ ∧ callEdge(e′)

∧m ∈ calls(stmt(e′), κcfa(origin(e′), π′)).

We have just shown that the second requirement holds. For the final require-
ment, we first notice that ηcfa(mmain ,mmain) = τinit by definition. To prove the
remaining part of this final requirement, consider π with π 6= mmain . For the
sake of contradiction, suppose that

ηcfa(mmain , π) 6= ⊥.

Then, by the definition of ηcfa, there exist e′, π′ such that

π = mmain ⊕ e′ ⊕ π′ ∧ callEdge(e′)

∧mmain ∈ calls(stmt(e′), κcfa(origin(e′), π′)).

This last conjunct contradicts our assumption that mmain is not in the range of
calls. ut

Let ηcfa be the translation constructed from κcfa by following the construction
in the proof of Lemma 10.

Proposition 2. σsba v R(ηcfa, κcfa).

Proof. Since κcfa is the result of the ∞-CFA analysis,

κI t Fcfa(κcfa) v κcfa.

As shown in Lemma 10, ηcfa satisfies the assumptions of Lemma 8. Furthermore,
R(ηcfa,−) is monotone. Hence,

σI v R(ηcfa, κI) v R(ηcfa, κcfa).

a Also, since ηcfa is consistent with κcfa and Fcfa(κcfa) v κcfa, Lemma 9 and the
monotonicity of R(ηcfa,−) imply that

Fsba(R(ηcfa, κcfa)) v R(ηcfa, Fcfa(κcfa)) v R(ηcfa, κcfa).

This means that R(ηcfa, κcfa) is a pre-fixpoint of λσ. σI t Fsba(σ). In the rest of
the proof, we will show that R(ηcfa, κcfa) is monotone

∀p, τ, τ ′ : τ v τ ′ =⇒ R(ηcfa, κcfa)(τ) v R(ηcfa, κcfa)(τ
′).

and

∀m ∈M : ∀τ ∈ Γ : τ v R(ηcfa, κcfa)(entry(m), τ).

Note that once these two are proved, Lemma 3 gives the desired σsba v R(ηcfa, κcfa).
The monotonicity of R(ηcfa, κcfa) is immediate from the definition of R. To prove
the other property, pick m ∈M and τ ∈ Γ. We need to show that

τ v R(ηcfa, κcfa)(entry(m), τ).

Since

R(ηcfa, κcfa)(entry(m), τ)

=
l
{κcfa(entry(m), π) | τ v ηcfa(m,π)},

our proof obligation can be discharged by showing that for every π,

ηcfa(m,π) v κcfa(entry(m), π).

But ηcfa(m,π) = κcfa(entry(m), π) by definition. ut

B.3 Step Three

Proposition 3. L(ηcfa, σsba) v κcfa v L(ηsba, σsba).

Proof. By Proposition 2,

σsba v R(ηcfa, κcfa).

By Lemma 1,

L(ηcfa, σsba) v κcfa.

The other inequality follows from Proposition 1. ut

B.4 Step Four

Lemma 11. ηcfa = ηsba.

Proof. Recall that ηsba is defined as the least upper bound of a sequence {ηn}n≥0:

ηsba(m,π) =
⊔
{ηn(m,π) | n ≥ 0}

where η0 is the constant map λ(m,π).⊥ and ηn+1 is defined by:

ηn+1(mmain ,mmain) = τinit

ηn+1(m,m⊕ e⊕ π) =
if (callEdge(e)
∧m ∈ calls(stmt(e), σsba(origin(e), ηn(method(e), π))))

then σsba(origin(e), ηn(method(e), π)) else ⊥
ηn+1(p, π) = ⊥ (for all the other cases).

Also, the following properties of ηcfa hold because κcfa is a fixpoint of λκ. κI t
Fcfa(κ) and ηcfa = λ(m,π). κcfa(entry(m), π):

ηcfa(mmain ,mmain) = τinit

ηcfa(m,m⊕ e⊕ π) = if (callEdge(e) ∧
m ∈ calls(stmt(e), κcfa(origin(e), π)))

then κcfa(origin(e), π) else ⊥
ηcfa(p, π) = ⊥ (for all the other cases).

Another thing is the following fact that we already have shown while proving
Lemma 2:

∀n,m, π : ηn(m,π) 6= ⊥ =⇒
(∀k ≥ n : ηk(m,π) = ηn(m,π)).

(27)

We will prove the following two properties:

1. ∀n,m, π : ηn(m,π) 6= ⊥ =⇒ ηn(m,π) = ηcfa(m,π).
2. ∀m,π : ηsba(m,π) = ⊥ =⇒ ηcfa(m,π) = ⊥.

We show the first property by induction on n.

1. Base case n = 0: The property holds in this case because ηn(m,π) = ⊥ for
all m and π.

2. Inductive case n > 0: Pick m,π such that ηn(m,π) 6= ⊥. By the definition
of ηn, this can happen if π = mmain ∧m = mmain or there exist e, π′ such
that

π = m⊕ e⊕ π′ ∧ callEdge(e)

∧m ∈ calls(stmt(e), σsba(origin(e), ηn−1(method(e), π′))).

If π = mmain and m = mmain , the desired equality holds as shown below:

ηsba(m,π) = τinit = ηcfa(m,π).

To handle the other case, assume the existence of e, π′ satisfying the condi-
tion described above. Then,

σsba(origin(e), ηn−1(method(e), π′)) 6= ⊥
∧ ηn(p,m⊕ e⊕ π′) = σsba(origin(e), ηn−1(method(e), π′)).

Since σsba is strict (Lemma 4), the first conjunct above implies ηn−1(method(e), π′) 6=
⊥. Because of induction hypothesis, this gives

ηn−1(method(e), π′) = ηcfa(method(e), π′) (28)

Also, by (27) and the definition of ηsba,

ηsba(method(e), π′) = ηn−1(method(e), π′). (29)

Meanwhile, by Proposition 3,

L(ηcfa, σsba)(origin(e), π′) v κcfa(origin(e), π′)

∧ κcfa(origin(e), π′) v L(ηsba, σsba)(origin(e), π′).

Because of (28) and (29), this implies that

σsba(origin(e), ηn−1(method(e), π′)) = κcfa(origin(e), π′), (30)

which gives

m ∈ calls(stmt(e), κcfa(origin(e), π′)). (31)

Using what we have shown so far, we complete the proof of this inductive
case:

ηn(m,m⊕ e⊕ π′) = σsba(method(e), ηn−1(method(e), π′))

= κcfa(method(e), π′)

= ηcfa(m,m⊕ e⊕ π′).

The second equality is from (30), and the third holds because of (31) and
our choice of e and p.

It remains to show that

∀m,π : ηsba(m,π) = ⊥ =⇒ ηcfa(m,π) = ⊥.

Pick m,π such that ηsba(m,π) = ⊥. We prove it by induction on the length of
π.

1. Base case |π| ≤ 1. For all π with length at most 1, ηcfa and all of ηn’s have
the same definition. Hence, ηcfa(m,π) = ⊥.

2. Inductive case |π| ≥ 2. Suppose that ηcfa(m,π) 6= ⊥. In order for this to
happen, there should exist e, π′ such that

π = m⊕ e⊕ π′ ∧ callEdge(e)

∧m ∈ calls(stmt(e), κcfa(origin(e), π′))

∧ κcfa(origin(e), π′) 6= ⊥.

By the induction hypothesis and the first property of ηsba on the non-⊥ case,

ηsba(method(e), π′) = ηcfa(method(e), π′). (32)

Meanwhile, by Proposition 3,

L(ηcfa, σsba)(origin(e), π′) v κcfa(origin(e), π′)

∧ κcfa(origin(e), π′) v L(ηsba, σsba)(origin(e), π′).

From these inequalities and the equality in (32) follows that

σsba(origin(e), ηsba(method(e), π′)) = κcfa(origin(e), π′).

Hence,

m ∈ calls(stmt(e), σsba(origin(e), ηsba(method(e), π′))).

This implies that

ηsba(m,π) = σsba(origin(e), ηsba(method(e), π′)).

Hence, ηsba(m,π) 6= ⊥, which contradicts our assumption.
ut

B.5 Putting It All Together

Theorem 2.(Correspondence) L(ηcfa, σsba) = κcfa.

Proof. By Proposition 3,

L(ηcfa, σsba) v κcfa v L(ηsba, σsba).

By Lemma 11, ηcfa = ηsba. Hence, the above inequalities imply that

L(ηcfa, σsba) = κcfa = L(ηsba, σsba).

ut

	A Correspondence between Two Approaches to Interprocedural Analysis in the Presence of Join

